Control of APP processing and Abeta generation level by BACE1 enzymatic activity and transcription.

نویسندگان

  • Yu Li
  • Weihui Zhou
  • Yigang Tong
  • Guiqiong He
  • Weihong Song
چکیده

Deposition of amyloid beta protein (Abeta) is one of the characteristic features of Alzheimer's disease (AD) neuropathology. Beta-secretase, a beta-site APP cleaving enzyme 1 (BACE1), is essential for Abeta biosynthesis. Although inhibition of BACE1 is considered a valid therapeutic target for AD, the enzymatic dynamics of BACE1 in regulating APP processing and Abeta generation has not yet been fully defined. To examine this issue, tightly controlled inducible BACE1 gene expression was established in the neuronal cell line N2ABP1 and the non-neuronal cell line E2BP1 using an ecdysone-inducible system. The BACE1 protein level was increased in a time- and dosage-dependent manner in the inducible BACE1 stable cells by treatment with inducer ponasterone A. The generation of APP CTFbeta, the beta-secretase product, increased proportionally with the level of BACE1 protein expression. However, Abeta40/42 production sharply increased to the plateau level with a relatively small increase in BACE1 expression. Although further increasing BACE1 expression increased beta-secretase activity, it had no additional effect on Abeta production. Furthermore, we found that BACE1 mRNA levels and BACE1 promoter activity were significantly lower than APP mRNA levels and APP promoter activity. Our data demonstrate that lower BACE transcription is responsible for the minority of APP undergoing the amyloidogenic pathway and relatively lower Abeta production in the normal conditions, and that a slight increase in BACE1 can induce a dramatic elevation in Abeta production, indicating that the increase in BACE1 can potentially increase neuritic plaque formation in the pathological condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salidroside attenuates hypoxia-induced abnormal processing of amyloid precursor protein by decreasing BACE1 expression in SH-SY5Y cells.

Hypoxia which is mainly mediated by hypoxia-inducible factor 1 (HIF-1), can greatly contribute to the occurrence of Alzheimer's disease (AD) by increasing beta-site APP cleaving enzyme (BACE1) gene expression, protein level and beta-secretase activity, resulting in a significant generation of amyloid-beta (Abeta). Salidroside has been reported to have great neuroprotective effects. The aim of t...

متن کامل

APP processing is regulated by cytoplasmic phosphorylation

Amyloid-beta peptide (Abeta) aggregate in senile plaque is a key characteristic of Alzheimer's disease (AD). Here, we show that phosphorylation of amyloid precursor protein (APP) on threonine 668 (P-APP) may play a role in APP metabolism. In AD brains, P-APP accumulates in large vesicular structures in afflicted hippocampal pyramidal neurons that costain with antibodies against endosome markers...

متن کامل

Distinct transcriptional regulation and function of the human BACE2 and BACE1 genes.

Amyloid beta protein (Abeta) is the principal component of neuritic plaques in Alzheimer's disease (AD). Abeta is derived from beta amyloid precursor protein (APP) by beta- and gamma-secretases. Beta-site APP cleaving enzyme 1 (BACE1) has been identified as the major beta-secretase. BACE2 is the homolog of BACE1. The BACE2 gene is on chromosome 21 and has been implicated in the pathogenesis of ...

متن کامل

BACE1 inhibition reduces endogenous Abeta and alters APP processing in wild-type mice.

Accumulation of amyloid beta peptide (Abeta) in brain is a hallmark of Alzheimer's disease (AD). Inhibition of beta-site amyloid precursor protein (APP)-cleaving enzyme-1 (BACE1), the enzyme that initiates Abeta production, and other Abeta-lowering strategies are commonly tested in transgenic mice overexpressing mutant APP. However, sporadic AD cases, which represent the majority of AD patients...

متن کامل

Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer's mice

The tumor necrosis factor type 1 death receptor (TNFR1) contributes to apoptosis. TNFR1, a subgroup of the TNFR superfamily, contains a cytoplasmic death domain. We recently demonstrated that the TNFR1 cascade is required for amyloid beta protein (Abeta)-induced neuronal death. However, the function of TNFR1 in Abeta plaque pathology and amyloid precursor protein (APP) processing in Alzheimer's...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2006